标准集团:CCD相机的原理
CCD相机是在安全防范系统中,图像的生成当前主要是来自CCD相机,CCD是电荷耦合器件(charge coupled device)的简称;
它能够将光线变为电荷并将电荷存储及转移,也可将存储之电荷取出使电压发生变化;
因此是理想的CCD相机元件,以其构成的CCD相机具有体积小、重量轻、不受磁场影响、具有抗震动和撞击之特性而被广泛应用。
含格状排列像素的CCD应用于数码相机、光学扫描仪与摄影机的感光组件。
其光效率可达70%(能捕捉到70%的入射光),优于传统软片的2%,因此CCD迅速获得天文学家的大量采用。
传真机所用的线性CCD
图像经透镜成像于电容数组表面后,依其亮度的强弱在每个电容单位上形成强弱不等的电荷。
传真机或扫瞄仪用的线性CCD每次捕捉一细长条的光影,而数码相机或摄影机所用的平面式CCD则一次捕捉一整张图像,或从中截取一块方形的区域。
一旦完成曝光的动作,控制电路会使电容单元上的电荷传到相邻的下一个单元,到达边缘一个单元时,电信号传入放大器,转变成电位。
如此周著复始,直到整个图像都转成电位,取样并数字化之后存入存储器。
存储的图像可以传送到打印机、存储设备或显示屏。
经冷冻的CCD同时在1990年代初亦广泛应用于天文摄影与各种夜视设备,而各大型天文台亦不断研发高像素CCD以拍摄极高解像之天体照片。
CCD在天文学方面有一种奇妙的应用方式,能使固定式的望远镜发挥有如带追踪望远镜的功能。
方法是让CCD上电荷读取和移动的方向与天体运行方向一致,速度也同步;
以CCD导星不仅能使望远镜有效纠正追踪误差,还能使望远镜记录到比原来更大的视场。
一般的CCD大多能感应红外线,所以派生出红外线图像、夜视设备、零照度(或趋近零照度)摄影机/照相机等。
为了减低红外线干扰,天文用CCD常以液态氮或半导体冷却,因室温下的物体会有红外线的黑体辐射效应。
CCD对红外线的敏感度造成另一种效应,各种配备CCD的数码相机或录影机若没加装红外线滤镜,很容易拍到遥控器发出的红外线。
降低温度可减少电容数组上的暗电流,增进CCD在低照度的敏感度,甚至对紫外线和可见光的敏感度也随之提升(信噪比提高)。